	[image: image1.emf]
	SUBSYSTEM
	Doc. Identifier

	
	
	Date

1. SUBSYSTEM: Gridification

1.1. Scope

The gridification subsystem (GT) provides the mechanisms for grid-wide services (eg. job control and submission, resource reservations) to access the local fabric services and vice versa. It will interface and protect the local fabric to other grid middleware components. It also enables site management and local control for compute centres.

At least logically, all interaction from the `outside' grid with a compute centre, as well as all interaction of a compute centre with the outside world is mediated by services provided by components belonging to this subsystem.

The GT will not mediate between services that are local to the fabric. However, since a consistent security infrastructure is an integral part of the gridification of a fabric, the GT may provide security components that have intra-fabric functionality, although not conceptually part of the gridification of a fabric.

1.2. Functionality

The Gridification subsystem is composed of five basic components:

· CE, ComputingElement: to mediate the request (eg. job execution, resource reservation) received from any grid entity (like the Grid Scheduler from WP1) to the Resource Management System. This component is the only one that can be accessed from outside the fabric.

· LCAS, local credential and authorization service: to provide local authorization for requests posed to the fabric by grid services.

· FLIDS, An automated local certifying entity that can sign certificate requests according to a predefined policy set list.

· LCMAPS, local credential mapping service: to provide all local credentials needed for jobs allowed into the fabric.

· GriFIS, grid fabric information service: to supply aggregate or abstracted information content about the local fabric to the Grid Information and Monitoring.

· FabNAT, fabric NAT gateway: to provide a mechanism to support connections from individual farm nodes to locations outside the fabric, for those types of communication that cannot be supported by transferring predefined integral data elements.

The GT components will provide to the monitoring subsystem auditing information generated by the components. This auditing information is to be logged and retained.

1.3. Subsystem Diagram

The following picture is a schematic view of the gridification components in relation to the RMS subsystem, the CDB subsystem, the Grid Scheduler (WP1) and the Grid Information and Monitoring System (IMS, from WP3).

Note: Diagram to be enhanced …
1.4. Component: ComputINGElement (CE)

1.4.1. Functionality

The ComputingElement (CE) will receive resource control operation requests from the Grid Scheduler (WP1). Examples of such control operations are job submission, job cancellation, resource reservations and reallocations. The CE receives together with the control operation, a credential (certificate), and the request description expressed in the Job Description Language (JDL, defined by WP1).

The protocol spoken between the Grid Scheduler and the ComputingElement is GRAM. It is based on and extends the functionality of the Globus gatekeeper. The ComputingElement is the sole entrypoint for Grid user jobs into a computing fabric.

The CE will generate a per-fabric unique local jobID to every incoming job and maintain a repository of current local jobs.

The CE will call the LCAS and the LCMAPS service and act according to the output of those components. In case of failure, it returns an error and does not call any further fabric-internal components.

The need for certain kinds of credentials (e.g., Kerberos tickets) is to be known to the LCMAPS system before the job starts. Therefore, the need for such credentials should be specified as part of the JDL.

The CE will afterwards contact the resource management subsystem (RMS) and present the entire operation description there. The RMS will not be contacted if the authorization in the LCAS or credential mapping in the LCMAPS failed.

The CE will notify the LCMAPS component after a job has been declared ‘finished’ by the RMS.

The CE provides to the other components a repository in which to look up references to the user grid credential, local credentials and job description, based on the local unique job ID.

1.4.2. Dependencies

The CE is purely an interfacing and mediating component. The real functionality comes from the components it talks to.

1.4.3. Interfaces

NOTE: putting these interfaces in an API format may be yet to soon. Maybe we should replace them by a short sentence in plain English. But for the time being, it gives an idea of what is required.
I think it gives the most clear idea of the required arguments and return values, but the methods described should not be taken as the definitive API (neither for naming not for arguments). As long as that's clear we should leave it like this
Any thoughts on returning an error context by throwing exception objects?
Control methods:
All methods can be called only within an established security context containing a global CAS signed authorization certificate of the requesting party.
· SubmitJob(request:JDL, allocationToken:kindOfToken|NULL): JobID

· GetJobStatus(id:JobID): JobStatus

· CancelJob(id:JobID):Result

· AllocateResource(request:JDL): allocationToken:kindOfToken
· FreeResource(allocationToken:kindOfToken):Boolean

I assumed AllocateResource is intended as a (future) advance reservation interface. SubmitJob is for immediate job requests and should be able to handle immediate allocations.
NOTE: This is to be discussed. Should the CE forward all types of requests directly to the RMS without differentiating ie. a CancelJob() from an AllocateResource()?
Others (restricted access):

· GetCredential(jobID): LCAScertificate

· GetRequest(jobID): JDL

1.4.4. Internal Data

A repository with the mapping between job ID’s, and grid credentials and JDL request descriptions is kept.

1.4.5. References

1.5. Component: LCAS

1.5.1. Functionality

The user’s certificate signed by a Grid authorization service (like the CAS) will be received by the LCAS component, together with the operation request expressed in JDL. The LCAS will verify the authorization in an iterative and extendible way by presenting the operation request to plug-in authorization modules, which will grant or deny permission to the request.

A series of basic plug-in authorization modules will be provided by default. These are: static user checking, static user banning, and the application of resource-independent policies.

The LCAS will provide hooks to insert external authorization plug-in modules, e.g., to apply resource-dependent and availability policies. These external modules are to be provided by the other subsystems, for example the RMS subsystem for CPU, and the StorageElement (WP5) for SE storage resources.

The end result of the authorization chain will be a user certificate signed by the LCAS. It will include an authorization audit trail. This certificate is obtained from the FLIDS component.

The LCAS component needs a database with policies. This database will be stored in the CDB configuration database.

1.5.2. Dependencies

Grid-wide authorization:

The LCAS assumes a grid-wide authorization service (eg. The Globus Community Authorization Service - CAS) exists, that will classify users or roles as being part of a group. Off-line arrangements between the local centres and the grid-wide CAS define high-level authorization for classes of users (for example: NIKHEF will accept ATLAS, LHCb and ALICE but no CMS jobs). The grid scheduler should take this authorization into account before posing jobs to a fabric. This is yet to be resolved with WP8-10 and WP1.

The LCAS primary focus is on individual or role authorization. For this to work, the job credentials provided to the LCAS must include a unique identification of the user or role that submitted the job (for example: the DN as stated in the user personal certificate). This is to be resolved within the DataGRID security working group; a consensus exists.
The LCAS accesses the FLIDS.

1.5.3. Interfaces

Can only be called in an established security context
· Get_fabric_authorization (request:JDL): LCAScertificate

1.5.4. Internal Data

A policy database is needed by the LCAS. This policy database will be stored within the CDB and is read by the LCAS. The LCAS does read but not modify this policy database.

1.5.5. References

1.6. Component: LCAS Plug-in Authorization Modules

The LCAS will provide, as described, a framework for plug-in authorization modules.

Subsystems, which provide resources accessible via the Grid, have to provide such a module for granting or denying access to them. Examples are:

· the RMS subsystem for accounting and quota-based authorization plug-ins

· the RMS subsystem for external network connectivity requests (see FabNAT)

· the StorageElement (WP5) for file access/space reservations.

The authorization modules provided by default together with the LCAS component itself will be:
· static user checking against a ban list

· application of high-level policy decisions that are dependent only on static sources like wall time

· application of rules regarding external connectivity, based on a fixed list of allowed remote networks

1.6.1. Functionality

When the LCAS calls an authorization module, it provides it with the resource request description in JDL, altogether with the originator’s certificate. With this information, the authorization module will decide to grant access or not, by returning a Boolean value.

1.6.2. Dependencies

The authorization modules may require to access information in the CDB. For 3rd-party modules delivered by a subsystem, they may want to access subsystem-internal functionalities or data.

1.6.3. Interfaces

As this module is called between two local components, the cred needs to be passed explicitly, and thus should be left in the method arguments.
· Confirm_authorization (request:JDL, cred:Certificate): boolean

1.6.4. Internal Data

This component should not maintain any permanent internal data.

1.6.5. Processing

Processing will be different for each module.

1.6.6. References

1.7. Component: FLIDS

1.7.1. Functionality

The fabric-local identity service (FLIDS) provides an automated local certifying entity that can sign certificate requests (based on X.509 certificates) according to a predefined policy set list.

The FLIDS is used by the LCAS for signing the local certificate requests generated by the LCAS.

The FLIDS is also used by the Installation subsystem for signing certificates required for initial installation.

1.7.2. Dependencies

1.7.3. Interfaces

This method is to be called within an established security context with the request generating party.

· Sign_certificate(requesttosign:CertificateRequest): Certificate

Note: is this correct at all?
Just beware that the (atomic) session with a security context is necessary to prevent any man-in-the-middle and replay attacks. Therefore, the requester credential is not part of the method.
1.7.4. Internal Data

The FLIDS maintains a public-private key pair in unencrypted form in a private secure repository (and therefore not in the CDB). A signing policy is maintained in the CDB.

1.7.5. References

1.8. Component: LCMAPS

1.8.1. Functionality

The credential mapping service (LCMAPS) provides all credentials necessary to access services within the fabric. It will only accept requests that can present a credential properly signed by the LCAS.

The need for authentication mechanisms by a job is to be specified as part of the JDL.

If the identity of the user exists within an administrative domain addressed by the job, the LCMAPS will return the local credentials corresponding to this pre-existing identity.

For those users who have no pre-existing identity within the administrative domain addressed, the LCMAPS will be able to generate a new identity.

The LCMAPS will at least provide for generation of UNIX user IDs and group IDs. If a local fabric supports other authentication methods, like Kerberos, the LCMAPS may provide mappings for those systems. The availability of these methods and the authentication and authorization types will be dependent on the underlying mechanism. TODO: details are to be specified.

The LCMAPS will register new local credentials within the fabric’s credential managing entity.

NOTE: this should be clarified- the uid/gid has to be pushed to a NIS or LDAP passwd server or distributing new group&passwd files to the fabric nodes - or whatever is needed for propagating new local credentials. Certainly the LCMAPS should not do it itself; do we need a new component here?
For uid/gis, I envisoined using a service like the gridmapdir patch, i.e. all the account information exists within the fabric already, and the accounts are (permanently) leased to entities entering the grid on a per-request basis (similar to DHCP leases). In this case, no pushing of distributing of credential files is needed.

If there is not to be a leasing service, a separate component should be introducted and both components should provide a similar interface to the outside world.
The CE will call the LCMAPS on start-up of a job. The StorageElement (SE, WP5) may also call the LCMAPS for allocating a credential required for storage. The LCMAPS will return a unique handle to each lease request.

When a request has been finished (for example, because a job has finished, or because the SE has removed all files belonging to a user), the LCMAPS will be called.

When the last request for a given local credential has been finished, non-permanent leases may be removed depending on local policy as specified in the CDB. PS: this is a simple flag in the CDB.
The issued local credentials may have a limited lifetime. For UNIX uids and gids, the LCMAPS service will have the possibility to make the mapping persistent and re-usable.

The LCMAPS must create and issue local credentials for every authorised user. No additional authorization is done at this level. Sole reason for refusing the mapping is lack of resources at this level, e.g., no more free uids available.

1.8.2. Dependencies

· Access to local databases containing the ‘permanent’ or ‘site’ repository of issued local ID’s and their associated certificates.

· The LCMAPS will provide auditing logs for storage to the monitoring system.

NOTE: how does the mapping btw. local user certificates and LCAScertificates happen?
I would suggest two repositories: a table with all leases related to an LCAS-signed role identity (the key would be the subject of the LCAS credential, e.g. "LHCb MC production manager", who might have submitted mutliple independent jobs under different local credentials?)

The second repository would be a table with index key the LeaseID, containing a list of all issued local credentials (with a maximum of one per type).

I changed the suggested API accordingly.
1.8.3. Interfaces

All methods can be called only within an established security context containing a LCAS-signed authorization certificate of the requesting party.

·
·
·

· NewLeaseLocalCredential: leaseID
· QueryLeaseLocalCredentials: leaseID[]
· AddCredentialType(leaseID, type:localCredentialType): localCredential
· QueryCredentialType(leaseID, type:localCredentialType): localCredential
· RemoveCredential(leaseID, localCredential): Boolean

· EndLeaseLocalCredential(leaseID): Boolean
1.8.4. Internal Data

The LCMAPS will maintain a repository of issued local identities. Access to this repository is restricted. Entries can only be read by processes currently running with one of the credentials associated with this identity.

1.8.5. References

1.9. Component: GriFIS

1.9.1. Functionality

The GriFIS will provide a correlation engine for the Monitoring subsystem to abstract externally relevant information from intra-fabric monitoring information. The information obtained from the various sensors and correlators in the monitoring system can also be correlated with the dynamic and semi-static information available from the RMS and provided via the monitoring framework. The GriFIS will also obtain information from the CDB subsystem. The metrics resulting from the GriFIS correlator will, when possible, be presented as attributes using the JDL semantics.

· The GriFIS will provide routines that can be called to calculate monitoring metrics that are needed by other Grid WPs.

· The GriFIS will publish this information in the IMS (WP3) associated to the fabric.

NOTE: How does job information publishing(?) happen? This information should be available only on request – or when the job status changes. Possibly this doesn’t belong to the GriFIS.
You should get the information from somewhere. Both alternatives (mediated via the GRIS or directly from the CE) are currently available from the Globus toolkit. If it is not to be in the GriFIS, then the CE should have a contact address per jobID and per allocationToken to request information and to control the job/allocation. The GT does not mind either of the two options, as long as the IMS supports authenticated and authorized access to the information services.
Note: Should the GriFIS access directly the RMS for obtaining information about resource status, queue types and lengths, etc?
I suggest the RMS published this information via the regular WP4 monitoring service, since this information is relevant to the scheduling of local admin tasks as well. GriFIS will abstract from and propagate this information to the WP3 IMS.
The published information should include:

· List and types of available resources (eg. queues)

· Resource boundaries (eg. minimal available temporary working storage, maximum CPU time, maximal running jobs)

· Current resource status (eg. current running jobs, total jobs)

· Resource availability (eg. time windows where the resource is up)

· Installed application environments

· Attached Storage Elements (SE’s) and their access protocol

Note: does all this information really go over the GriFIS?
1.9.2. Dependencies

Monitoring subsystem: The GriFIS contains acorrelation engine plug-in component for the Monitoring subsystem.

Configuration Database subsystem: The GriFIS will also obtain data from the Configuration Database, ie. available application environments.

Note: this is not a correlation engine specific activity. Maybe the GriFIS contains a correlation engine, certainly it does more than that.
It will indeed provide information as well,especially if the job /allocation information is to be provided via a separate contact address in the CE.
IMS (WP3): The correlated information has to be published into the IMS.

1.9.3. Interfaces

This is a plug-in component. The Monitoring Correlation Engine framework specifies the interfaces. It will use the event subscription options available with the Correlation Engine framework.

1.9.4. Internal Data

1.9.5. References

1.10. Component: FabNAT

1.10.1. Functionality

FabNAT will provide a method for streaming connections (data pipes for visualisation, interactive sessions, MPI, etc) to be channelled out of the local fabric onto the wide-area Grid environment.

FabNAT will provide a gateway system to create and destroy streaming connections between individual worker nodes within a fabric to the external fabric boundary. This fabric boundary is defined as being on the same connectivity level as the ComputingElement CE.

The need for external communication streams by a job is to be specified as part of the JDL, together with the final destination and the communication type (eg. TCP or UDP sockets)

The FabNAT will provide an LCAS plug-in authorization module to check the validity of the communications destination requested. This is a static check only.

The FabNAT subsystem will rely on the RMS to approve or disapprove of the use of connections by a specific job. For this, the need for connections needs to be accepted by a RMS plug-in authentication module in the LCAS. The availability of communications channels will be announced to the Resource Manager on request.

The FabNAT is then contacted by the Resource Manager subsystem (RMS) for the actual communications channel request.

If the internal connectivity of the nodes uses a network protocol or network addressing space different from the one used on the external side of the ComputeElement and it is required that connectivity is provided to a final destination that cannot be tunnelled transparently, then the FabNAT component will maintain a repository where the mapping between intra-fabric connectivity and the externally visible connectivity is stored. This repository will be an integral part of the fabric's GIS.

The FabNAT subsystem will not guarantee that a persistent communications channel can be established in a fabric that allows for job migration between nodes.

The FabNAT subsystem will assign the ports and port-ranges to a specific job or a specific machine. The ports or port ranges should be considered a resource, to be managed in a way consistent with the machine and storage requirements of a job.

If all parties involved in a communications channel use the same protocol stack in a transparent environment (e.g., all use IPv6), then no management of the channels is required, as the resources can be considered infinite.

1.10.2. Dependencies

1.10.3. Interfaces

· Request a connection for a given external destination and a given connection type

· Close an already open connection

· Verify availability for a given connection type

1.10.4. Internal Data

FabNAT maintains a repository whith the mapping between intra-fabric connectivity and the externally visible connectivity.

1.10.5. References

 CDB

Resource request in JDL

+

CAS signed certificate

Farm1

Farm2

CE

Policy

(CDB)

Repository

 LCAS

LCMAPS

RMS

GriFIS

Repository

FabNAT

 Grid

Scheduler

(WP1)

IMS

(WP3)

