[image: image1.jpg]

DataGrid

WP4 architecture definition Document

DRAFT

[image: image7.emf]
	
	Document identifier:
	DataGrid-xx-TYP-nnnn-0_0

	
	Date:
	30/04/2001

	
	Work package:
	WP4

	
	Partner:
	…

	
	
	

	
	Document status
	DRAFT

	
	
	

	
	Deliverable identifier:
	DataGrid-Dxx.y

	Abstract: to be done.

	Delivery Slip

	
	Name
	Partner
	Date
	Signature

	From
	German Cancio
	CERN
	
	

	Verified by
	
	
	
	

	Approved by
	
	
	
	

	Document Log

	Issue
	Date
	Comment
	Author

	0_0
	30/04/2001
	First draft
	WP4. Edited by German Cancio

	
	
	
	

	
	
	
	

	
	
	
	

	Document Change Record

	Issue
	Item
	Reason for Change

	
	
	

	
	
	

	
	
	

	Files

	Software Products
	User files

	Word
	wp4-definition

	
	

Content

51. Introduction

1.1. Objectives of this document
5
1.2. Structure of this document
5
1.3. Application area
5
1.4. Applicable documents and reference documents
5
1.5. Document evolution procedure
5
2. Task: Configuration management
6
2.1. Introduction
6
2.2. Scope and functionality
6
2.2.1. Scope
6
2.2.2. Functionality
7
2.3. External INTERFACES AND Requirements
8
2.3.1. External Interfaces
8
2.3.2. External Requirements and Open Questions
8
2.4. Use cases
9
3. TASK: RESOURCE MANAGEMENT
10
3.1. Introduction
10
3.2. Scope and functionality
10
3.2.1. Scope
10
3.2.2. Functionality
12
3.3. External Interfaces AND requirements
13
3.3.1. External Interfaces
13
3.3.2. External Requirements and Open Questions
13
3.4. Use Cases
16
3.4.1. Install new Software on one node
16
3.4.2. Install new Software on several/all nodes
17
3.4.3. Scheduling user tasks
17
3.4.4. Node Failure
17
4. GRIDIFICATION
18
4.1. introduction
18
4.2. SCOpe and functionality
19
4.2.1. Scope
19
4.2.2. Functionality
20
4.3. External interfaces and requirements
23
4.3.1. External Interfaces
23
4.3.2. External Requirements
23
4.3.3. Open Questions
25
4.4. Use Cases
26
4.4.1. Case: Submit a job to a fabric
26
4.4.2. Use case: confirming a hosts identity on first install
28
4.5. ACRONYMS AND EXPLANATIONS
29
5. Task: Installation
31
5.1. Introduction
31
5.2. SCOPE AND FUNCTIONALITY
31
5.2.1. Scope
31
5.2.2. Functionality
31
5.2.3. Overview
34
5.2.4. Constraints
34
5.3. EXTERNAL INTERFACES AND REQUIREMENTS
34
5.3.1. External Interfaces
34
5.3.2. External Requirements and Open Questions
35
5.4. USE CASES
36
5.4.1. Upgrade of Sendmail
36
5.4.2. Installation of sshd
37
5.4.3. Upgrade emacs
37
5.4.4. Spontaneous modification of installed software/configuration
37
5.4.5. Installation of a new fabric node
37
6. Task: Monitoring
39
6.1. Introduction
39
6.2. Scope and Functionality
39
6.2.1. Scope
39
6.2.2. Functionality
39
6.3. External interfaces and Requirements
40
6.3.1. External Interfaces
40
6.3.2. External Requirements and Open Questions
40
6.4. use caseS
41
6.4.1. Measuring the CPU load for a week and present the data on the screen.
41
7. TASK: FAULT TOLERANCE
42
7.1. Introduction
42
7.2. Scope and functionality
42
7.2.1. Scope
42
7.2.2. Functionality
42
7.3. External Interfaces and Requirements
44
7.3.1. External Interfaces
44
7.3.2. External Requirements and Open Questions
45
7.4. Use Cases
45
8. Glossary
46
8.1. Configuration Management
46
8.1.1. Definitions
46
8.1.2. Acronyms
46
8.2. Resource Management
47
8.3. Gridification
47
8.3.1. Acronyms
47
8.4. Installation
47
8.5. Monitoring
47
8.6. Fault Tolerance
47
9. Bibliography
48
1.
Introduction

1.1. Objectives of this document

[TBD]

1.2. Structure of this document

[TBD]

1.3. Application area

[TBD]

1.4. Applicable documents and reference documents

Applicable documents

	[A1]
	

	
	

	
	

Reference documents

	[R1]
	

	
	

	
	

1.5. Document evolution procedure

[TBD]

2. Task: Configuration management

2.1. Introduction

A configuration information is any piece of information that is needed in order to statically configure a computer by modifying its configuration files. It does not include transient or status information such as CPU load or the fact that the machine is being modified.

The purpose of the WP4 configuration task is to provide a database to access configuration information. It should be seen as a black box with well defined APIs to store and retrieve information.

The task will also provide a language to express configuration information. It will then be up to the users of the configuration database to provide the configuration data that will be stored in the database.

2.2. Scope and functionality

2.2.1. Scope

Here are the requirements for the configuration task identified so far:

· the configuration language should at least be able to describe hardware, system, application and monitoring configuration information

· the language should be able to describe all the configuration information needed by the other tasks of WP4

· the language should be extensible

· the language should support abstraction

· access to the database should be restricted (authentication and authorisation)

· read access to the database should be simple and efficient

· the stored configurations must be validated (e.g. dependency checks)

· changes to the database must be atomic and synchronous

· changes to the database should trigger notification messages

· the database should be secure

· the database should be scalable

· the database should be fault tolerant

· a graphical configuration editor should be provided

2.2.2. Functionality

2.2.2.1. Overview

[image: image2.png]manipulation
(read- write)

fetehing
(read-onl'y

Acronyms and explanations:

· GUI: graphical user interface

· CLI: command line interface

· CDB: configuration database

· HLD: high-level description

· LLD: low-level description

· CLLD: cached low-level description

· MLD: machine level description (e.g. final files like /etc/passwd)

· arrows represent data flows

· items in italic are outside of the scope of the configuration task

Features/keywords/concepts for the different components:

· GUI: "save this change as file" option, file to be used by CLI

· CDB: transaction, validation, handle arbitrary data, synchronous, self-contained (compilation does not need info outside CDB), consistent (data stored always validated), extensible language

· HLD: template (2-way relations), delegation (different views), multiple skill levels, abstraction, declarative, version control

· LLD: exhaustive, traceability, version/timestamp/checksum

· CLLD: consistent cached data (from consumer point of view)

· compilation: one way only, fast

· fetching: scalable, reliable

· CLLD API: simple (open(CFG), fetch(CFG, KEY), close(CFG)?)

· all: security, simplicity

2.3. External INTERFACES AND Requirements

2.3.1. External Interfaces

[TBD]

2.3.2. External Requirements and Open Questions

Here are the requirements from the configuration task to the other tasks of WP4:

· all the WP4 tasks wanting to store configuration data must provide their requirements to us with use cases (e.g. real data/schema)

2.3.2.1. Open Questions

· how to store private information in the database? (e.g. SSH private host key needed when a machine gets re-installed from scratch)

· which key(s) can be used to query information?

· which key(s) can be used to uniquely identify a machine?

· which level of security should be provided?

· whose responsibility is it to notify machines of configuration changes? (+ do we allow granularity like "warn me if this subtree has changed")

· whose responsibility is it to do scheduling for WP4? (e.g. plan a software change for next night)

· whose responsibility is it to manage action queues for WP4?

· should we have a common access policy (LCAS?) inside WP4 or GRID?

· what should be the relations with other databases? (e.g. network DB (LANDB at CERN), human resource DB...)

· shall we provide the "global schema" for the database?

· how to store/handle software dependencies?

· are there any cross-site requirements on us?

· should we have default values for everything in a LLD?

· who can do the HLD design (e.g. global schema)?

· how fault-tolerant should we be?

· do we do type checking in the language? how?

· how to ensure version matching between code and data?

· where should the code for the LLD->MLD translation be stored?

· how can we handle the cache, enforce cache policy?

· what if the change for one HLD can't be validated because one LLD (out of hundreds generated) is not valid?

2.4. Use cases

[TBD]
3. TASK: RESOURCE MANAGEMENT

3.1. Introduction

The purpose of the Resource Management System (RMS) is to have the total control over farm-resources in a DataGrid Compute Center. At each point in time the RMS has information about and control over every task that runs on a node (maybe with a local queuing system of that farm as a proxy). The RMS will be able to include and exclude nodes from the farms if necessary (indicated by the monitoring system or fault detection system). The user of the RMS will be the Grid-Scheduler, administrators and local users. The RMS provides the ability to schedule jobs to nodes so that the jobs have exclusive access to these nodes and no other processes influence these jobs.

3.2. Scope and functionality

3.2.1. Scope

· The RMS can add and delete nodes to/from the cluster based on decisions made by the monitoring and fault detection system.

· The RMS should offer several scheduling strategies like FCFS, Backfill, shortest-jobfirst, longest-job-first, deadline-scheduling or advance reservation.

· The RMS accepts resource requests from the WP1 (Grid Work Scheduling).

· The RMS accepts resource requests from administrators for configuration, upgrading and other administrative tasks.

· The RMS accepts resource requests from local users of the computer center.

· We provide requirements for a language to describe jobs which should run on clusters. The description language includes the possibility to define a number of nodes and special properties of nodes that are needed to execute the specified job.

· The RMS schedules all jobs (user/grid jobs and administrative jobs). But RMS will not generate new jobs by itself. If one wants a job working as a job-factory that generates more jobs, this job has to be contain commands that are executed during job-runtime to produce new jobs. There is no magic component in RMS that could do this.

· The RMS is also responsible for accounting.

· All jobs for farms should be scheduled via the RMS. Otherwise RMS can’t have the total control over the resources and can’t schedule jobs correctly. RMS has to know about every job. Otherwise it cannot work correctly. This implies not that every job has to be a grid job. RMS can also have a command line interface for job submission similar to queuing systems. If a computing center wants to use 70% of a farm for local users and 30% for the grid, they can do this. The job definition includes information whether a job is a local user job or a grid job. Then the local user contingent will be configured to get 70% and the grid contingent to get 30%.

· RMS wants to schedule jobs depending where the data are available. If you use the online storage of a cluster as a file storage, it is a good idea to schedule the jobs to that nodes, that save the data.. Otherwise we have unnecessary communication overhead in the farms that will slow doen the whole cluster.

WP1 and WP4 must agree on a common job description language. This topic should be discussed in the ATF (Architecture Task Force). In this document we discuss aspects of the job description language in Section 4.3. The RMS should not provide information about resources directly to the Grid level but provides these information to the gateway. Our view to the components architecture in WP4 is shown in the next picture.

RMS is not:

· Manage other systems than the farm-nodes. It makes no sense to schedule jobs to servers, because they run only a daemon and are not used to execute grid jobs or local jobs for calculation.

· RMS will focus on the requirements for the DataGrid project. RMS will not schedule jobs to laptops or other workstations that are not part of farms.

· Account and user management.

· RMS is not the fault detection or fault solution system.

· RMS don’t decomposites high-level operations into low-level operations, but you can specify one job that should run on n nodes (a parallel MPI job).

· RMS will not change the WP4 configuration database. If a node is down RMS changes the queue configuration, but this will not be written to the config DB, because this is not the intended state of the node and the configDB contains the intended configuration, not the current. Thefore RMS will not write to the configDB.

3.2.1.1. Overview

. [image: image3.png]The Grid

Tier T Cenrey

Gatewns Local Uscrs Jobs

Jobs | Res. Infos

Actions

Resource Manngement Systern Fault Recovery Systen

Nod A\‘N,m
tuos | Jobs Tfos | Jobs O\

[Cocal Quencing Systen ocal Quenelng Syster]

[Monitoring| ConfigDB

Farm Farm n

3.2.2. Functionality

3.2.2.1. Components

For the RMS we suggest to use the CCS [KR01] and its components. To get more information about CCS and its functionality read the [KR01] paper. CCS contains also a component that can be used as local queuing system of a farm. CCS will be published as open source software in the near future (a few months) as said by the developers.

3.2.2.2. Fault Tolerance in CCS.

CCS consists of several distributed managers for different subtasks. To cope with failure the Domain Manager(DM) maintains a database on the status of all system components in his domain. Each CCS daemon notifies the DM when starting up or closing down. The DM periodically pings all connected daemons to check if they are still alive. More information can be found in the technical report ``Anantomy of a Resource Management System for HPC Clusters''.

3.3. External Interfaces AND requirements

3.3.1. External Interfaces

The RMS will provide information to the outside and will need interfaces to query information from the outside. Interfaces to publish information to other components:

· retrieve the current schedule,

· get information on available resources like number of nodes, type of nodes, ...

· ...

Interfaces to push information into the RMS:

· submit jobs (gateway, local users, administrators, fault detection system)

· exclude node x from farm a (monitoring/fault detection).

· include node x into farm a (monitoring/fault detection).

· ...

Interfaces to allow the RMS to pull information:

· to get monitoring information about the status of the nodes and

· from the WP4 configuration databases to fulfill the jobs software requirements expressed in JDL
. RMS only reads from configDB, but not writes to it.

· ...

3.3.2. External Requirements and Open Questions

In this section we describe the requirements that must be fulfilled to make RSM runnable.

· local queueing systems must be installed

· the gateway must be grid-enabled

· the RMS queries the Configuration database to match the requirement description of a job with node configuration...

3.3.2.1. Job Description Language

JDL should be based on XML because this reduces the need to develop parsers to parse the JDL. Standard components to parse XML can be used. The JDL should be a unified language to describe resources and job requirements. Then the match between job requirements and available resources can be achieved much simpler, because no additional transformation is needed to perform the match and it is guarenteed that this matching is possible.

3.3.2.1.1. Attributes proposed by WP1

WP1 proposed a draft ist of attributes for job description. The draft list circled during the Amsterdam DataGrid workshop looked as follows:

3.3.2.1.2. Resource Manager Info

	Attribute
	Description

	Hn
	The host name of the ``front-end'' machine

	Service
	The name of the job manager

	Contact
	The string identifying the contact information

	ResourceManagementType
	The type of resource management system

	ResourceManagementVersion
	The version of the resource management system

	Gramversion
	The GRAM version

3.3.2.1.3. Queue Info

	Attribute
	Description

	Queue
	The name of the queue

	Architecture
	The architecture of the machines associated to this queue

	OpSys
	The operating system of the machines associated to this queue

	TotalCpus
	The number of total CPUs associated to this queue

	FreeCpus
	The number of free processors available to run jobs submitted to this queue

	TotalJobs
	The total number of jobs in the queue

	Running Jobs
	The number of jobs currently running in the queue

	IdleJobs
	The number of jobs not running in the queue

	MaxTotalJobs
	The maximum number of jobs allowed for this queue

	MaxRunningJobs
	The maximum number of running jobs allowed for this queue

	Status
	The status of this queue

	RunWindows
	The time windows that define when the queue is active

	Priority
	The priority of this queue

	MaxCpuTime
	The maximum CPU time allowed for jobs submitted to this queue

	MaxWallTime
	The maximum wall clock time allowed for jobs submitted to this queue

3.3.2.1.4. Job Info

	Attribute
	Description

	GlobalJobId
	The Globus id of the job

	LocalJobId
	The id of the job in the underlying resource management system

	GlobalUser
	The id of the Grid user

	LocalUser
	The username in the local system

	Status
	The status of the job

	PendingReason
	The reason for which the job is not running

	RSLCommand
	The RSL string used to submit the job

	SubmitTime
	The time at which the job has been submitted

	StartTime
	The time at which the job first began running

	WallClockTime
	The wall clock time accounted for this job

3.3.2.2. Our suggestions to WP1 proposed attributes for JDL

We think that those attributes need further definition to prevent ambiguous entries. E.g. the attribute Architecture could mean the same thing by different values. ``x86'' <--> ``Intel Pentium''. Not all attributes can be accepted by WP4, because maybe too much information passes the gateway (for political reasons, not bandwidth restrictions). Also we need additional attributes to fulfill WP4 internal requirements.

	Attribute
	Description

	JobDependencies
	It is possible that several jobs must be finished before this job can be started. The value of this attribute can be a list of GlobalJobIds.

	PhysicalNode
	The physical node number of the node where the job has to be executed (necessary for administrative jobs).

	TimeOut
	RMS tries to get the requested resources. If these resources aren't available within the specified TimeOut, a 'job failed' notification will be send back to the job submitter.

	JobSubmitter
	To have a backwards communication channel for diagnostic information (job fail, ...).

	to be continued
	

We need a method to specify job-chains. That are jobs that have to be executed one after the other. Maybe the JobDependencies attribute can used for this.

3.3.2.3. Open questions

· Should cron jobs that clean local log files of nodes be scheduled by the RMS? First suggestion: yes! By including these jobs in the scheduling process the RMS keeps control over every task in the farms and we have a clean architecture without unwanted side effects that could badly influence other jobs (invalidate performance measurements during code development, ...).

· Advance reservation: Maybe it is possible that RMS task implements advance reservation by itself when local queuing systems of some farms don’t implement it.

· (With which userid are Grid-Jobs run? Does every user get an account on each node or will there be temporary accounts? What about job chains?)

· (WP1) How will the job description language express dependencies between jobs to express job chains, where temporary data must not be deleted after the first job finishes?

· (WP1) How will the location of data that is needed to complete a job described in the JDL? The RMS wants to take the location of data for efficient scheduling in the farms into account.

· (WP1) It seems to be no problem to allow jobs to specify which standard software they use, but what about custom software (development codes)? Will grid users provide source code with job requests? Will users send executables? How does a user send this information?

3.4. Use Cases

3.4.1. Install new Software on one node

The currently discussed way to install new software. People of the RMS task think that this will not work, because they think that the system administrators have to push more information into the system to perform installations, updates etc.

An administrator reconfigures the Configuration Database. The fault detection system detects a mismatch between the configuration database and the current status of a node. Therefore it sends a job to the RMS to fix this problem. In the job description language it declares the physical node number of the node that needs a new software. The RMS forwards this task to the corresponding local queuing system of the farm and the job will be executed on the correct node when that becomes available (other jobs finished). If the node is not part of the cluster at that time, the job will fail (maybe after a specified timeout).

3.4.2. Install new Software on several/all nodes

An administrator sends a job to the RMS to install software on a group of nodes. The corresponding entry in the configDB is marked pending (with a timeout) until the software is installed so that the monitoring/fault detection system will not report errors for this scheduled and planned installation task. The RMS forwards the tasks to the local queuing systems of the farm that execute the installation jobs. The installation jobs by itself will delete the pending flag from the configuration database. After that the monitoring/fault detection system will again start to monitor this aspects and report errors.

3.4.3. Scheduling user tasks

The RMS receives a job request and enqueues the job in the local queuing system of one of its proper farms. In case of Grid jobs the RMS receives the job request from the WP4 gateway.

3.4.4. Node Failure

The monitoring system detects a node failure and will report it via the Fault Detection System to the RMS. The RMS will configure the local queuing system of the responsible farm to not schedule jobs to this node any longer.

4. GRIDIFICATION

4.1. introduction

The gridification task (GT) provides the mechanisms for grid-wide services to access the local fabric services and vice versa. It will hide and/or protect the local fabric from the intrusion from other grid middleware into the fabric and enable site management and local control for compute centres.

At least logically, all interaction from the `outside' grid with a compute centre, as well as all interaction of a compute centre with the outside world should be mediated by services provided by this gridification task.

The GT will not mediate between services that are local to the fabric. However, since a consistent security infrastructure is an integral part of the gridification of a fabric, the GT may provide security subsystems that have intra-fabric functionality, although not conceptually part of the gridification of a fabric.

[image: image6.wmf]actuators

Farm Nodes

Monitoring

sensors

Config

DB

Mon.

DB

RSM/

Sched

.

HMO

4.2. SCOpe and functionality

4.2.1. Scope

Gridification of a local fabric concerns five basic subsystems. The ensemble of these subsystems constitutes the deliverable for the Gridification Task.

· LCAS, local credential and authorization service: to provide local authorization for requests posed to the fabric by grid services

· LCMAPS, local credential mapping service: to provide all local credentials needed for jobs allowed into the fabric

· GjMS, grid job mediating service: to mediate the job received from any grid entity to the local job management system

· GriFIS, grid fabric information service: to supply aggregate or abstracted information content about the local fabric to external entities on the grid

· FabNAT, fabric NAT gateway: to provide a mechanism to support connections from individual farm nodes to locations outside the fabric, for those types of communication that cannot be supported by transferring predefined integral data elements

For some of its functionality, the gridification subsystems rely on components provided by other WP4 tasks and on functionality provided by other DataGrid work packages. These will be indicated per subsystem.

One general remark concerns fabric-wide repositories. Many of the GT subsystem have a need to publish information in a repository. All such repositories can be mapped on a single table or hash structure. The subsystems will maintain such tables as part of their implementation.

The GT task will user the monitoring subsystem for all auditing information generated by the subsystems. This auditing information should be logged and retained.

The LCAS needs a database with policies. This database could be part of the configuration database which is set up and used in the configuration task of WP4.

4.2.2. Functionality

4.2.2.1. Local authorization (LCAS)

· The user credential or authorization token received from a Grid authorization service will be received by the LCAS subsystem. This LCAS will verify the authorization in an iterative and extendible way.

· A series of basic authorization modules will be provided by the gridification task. These are: static user checking, static user banning, and the application of resource-independent policies. It will provide hooks to insert external authorization modules, e.g., to apply resource-dependent and availability policies. These external modules are to be provided by the other WP4 sub tasks.

· The end result of the authorization chain will be a user certificate signed by the LCAS. It will include an authorization audit trail.

· Authorization modules provided by this subsystem itself will be: (i) static user checking against a ban list, (ii) application of high-level policy decisions that are dependent only on static sources like wall time, (iii) application of rules regarding external connectivity, based on a fixed list of allowed remote networks.

· The LCAS or a derived subsystem will provide an automated local certifying entity that can sign certificate requests according to a predefined policy set list. This service is also available within the fabric. For intra-fabric applications, this service may be referred to as the fabric-local identity service (FLIDS).

4.2.2.2. Local credentials generation (LCMAPS)

· The credential mapping service (LCMAPS) will provide all credentials necessary to access services within the centre. It will only accept requests that can present a credential properly signed by the LCAS.

· If the identity of the user exists within an administrative domain addressed by the job, the LCMAPS will issue credentials corresponding to this pre-existing identity.

· For those users who have no pre-existing identity within the administrative domain addressed, the LCMAPS will be able to generate a new identity.

· The LCMAPS will maintain a repository of issued local identities. This repository will have access control rights associated with each individual credential.

· The LCMAPS will provide auditing logs (but is not prepared to store them).

· The LCMAPS will at least provide for generation of UNIX user IDs and group IDs.

· If a local fabric supports other authentication methods, like Kerberos, the LCMAPS may provide mappings for those systems. The availability of these methods and the authentication and authorization types will be dependent on the underlying mechanism. TODO: details are to be specified.

· The need for authentication mechanisms by a job is to be specified as part of the JDL.

· The issued local credentials may have a limited lifetime. For UNIX uids and gids, the LCMAPS service will have the possibility to make the mapping persistent and re-usable.

· The LCMAPS must create and issue local credentials for every authorised user. No additional authorization is allowed at this level. Sole reason for refusing the mapping is lack of resources at this level, e.g., no more uids available.

4.2.2.3. Mediating grid jobs in the local fabric (GjMS and ComputeElement)

· The Grid job mediating service (GjMS) will receive the job description from Grid scheduler. The protocol spoken between the Grid scheduler and GjMS/ComputeElement is GRAM. It is based on and extends the functionality of the Globus gatekeeper. The GjMS/ComputeElement is the sole entrypoint for jobs into a fabric.

· The GjMS will obtain a per-fabric unique local job ID to every incoming job and maintain a repository of current local jobs. Unless required by other WP4-internal subsystems, the GjMS will generate such an ID. It will maintain a mapping between local jobIDs and the Grid-wide jobID as presented in the JDL. It will update the LocalJobID attribute in the JDL when appropriate.

· The GjMS will call the LCAS and the LCMAPS service and act according to the output of those subsystems. In case of failure, it will notify the ComputeElement and not call any further fabric-internal subsystems.

· The GjMS will contact the WP4 resource management system RMS and present the original and entire job there. The syntax and semantics of the job submission will be unchanged. The RMS will not be contacted if the authorization in the LCAS or credential mapping in the LCMAPS failed.

· The GjMS will notify the LCMAPS subsystem after a job has been declared `finished' by the RMS.

4.2.2.4. Generation of information about the local fabric (GriFIS)

The GriFIS will provide a correlation engine (as defined by the WP4 monitoring task) to abstract externally relevant information from intra-fabric monitoring information. The information obtained from the various sensors and correlators in the monitoring system can also be correlated with the dynamic and semi-static information available from the RMS. This resource information is preferably provided via the monitoring framework. The metrics resulting from the GriFIS correlator will, when possible, be presented as attributes using the JDL semantics.

· The GriFIS will provide routines that can be called to calculate monitoring metrics that are needed by other Grid WPs.

· The GirFIS will publish this information in the fabric's GIS.

4.2.2.5. Interfacing local nodes to the grid (FabNAT)

FabNAT will provide a method for streaming connections (data pipes for visualisation, interactive sessions, MPI, etc) to be channelled out of the local fabric onto the wide-area Grid environment.

· GriGATE will provide a gateway system to create and destroy streaming connections between individual worker nodes within a fabric to the external fabric boundary. This fabric boundary is defined as being on the same connectivity level as the compute element CE.

· If the internal connectivity of the nodes uses a network protocol or network addressing space different from the one used on the external side of the ComputeElement and it is required that connectivity is provided to a final destination that cannot be tunnelled transparently, then the FabNAT subsystem will maintain a repository where the mapping between intra-fabric connectivity and the externally visible connectivity is stored. This repository will be an integral part of the fabric's GIS.

· The FabNAT subsystem will not guarantee that a persistent communications channel can be established in a fabric that allows for job migration between nodes.

· The FabNAT subsystem will assign the ports and port-ranges to a specific job or a specific machine. The ports or port ranges should be considered a resource, to be managed in a way consistent with the machine and storage requirements of a job.

· The FabNAT subsystem will rely on the RMS to approve or disapprove of the use of connections by a specific job. For this, the need for connections needs to be expressed in the JDL

4.3. External interfaces and requirements

4.3.1. External Interfaces

[TBD]
4.3.2. External Requirements

4.3.2.1. LCAS

4.3.2.1.1. Grid-wide authorization by WP1 or Security group

The LCAS assumes a grid-wide authorization service CAS exists, that will classify users or roles as being part of a group. Off-line arrangements between the local centres and the grid-wide CAS define high-level authorization for classes of users (for example: NIKHEF will accept ATLAS, LHCb and ALICE but no CMS jobs). The grid scheduler should take this authorization into account before posing jobs to a fabric. [To be resolved with WP1 and WP8-10]

The LCAS primary focus is on individual or role authorization. For this to work, the job credentials provided to the LCAS must
 include a unique identification of the user or role that submitted the job (for example: the DN as stated in the user personal certificate). [To be resolved within the security working group, consensus exists]

4.3.2.1.2. WP4 resource management and other tasks

For any internal WP4 subsystem that needs to influence the user authorization at job submission time, we should provide plug-able modules that can be called by the LCAS. These modules will be supplied with the user credentials and the job description as supplied by the CE. The modules should return a Boolean value whether or not to grant authorization.

In particular, the RMS taskforce is invited to provide modules to implement accounting and quota-based authorization plug-ins. [This requirement is not in the critical path]

The policy database should be part of the configuration database. [To be discussed with Configuration Management]

4.3.2.2. LCMAPS

4.3.2.2.1. Local operating system

The LCMAPS will use the underlying operating systems support for creating the user mapping: e.g. for generating user leases on a single workstation it will use the password and group files. If the underlying operating system does not support more advanced user authorization mechanisms than plain uid/gid, the LCMAPS will not provide more.

4.3.2.2.2. Other WP4 subsystems

The LCMAPS will need to be called by either the GjMS or the Resource Manager on start-up and termination of a job or request. The information provided should at least be the unique job ID and the users credential. In case the LCMAPS was used to allocate a local credential for a non-job request like storage, it will be called when all entities related to that single request have been removed. The Resource Manager will need to contact the LCMAPS repository to obtain the local credentials to use. This will be indexed using the users original individual subject name (cert DN of the individual's credential). [Waiting for general use case]

4.3.2.2.3. Job Description Language

The need for certain kinds of credentials (e.g., Kerberos tickets) is to be known to the LCMAPS system before the job starts. Therefore, the need for such credentials should be specified as part of the JDL. For LCMAPS invocations that are not related to jobs, this information is to be passed in a way yet to be specified. [Requirement on WP1]

4.3.2.3. GjMS

4.3.2.3.1. Other Grid systems and WPs

This subsystem needs the job description and the user's or role's credential from the CE.

4.3.2.3.2. Other WP4 subsystems

The GjMS will do nothing with the job, except for calling the different WP4 subsystems. It needs a RMS capable of accepting any job with sufficient authorization.

It will provide to the other components a repository in which to look up references to the user grid credential, local credentials and job description, based on the local unique job ID.

4.3.2.4. GriFIS

4.3.2.4.1. Other Grid systems and WPs

It needs the monitoring framework provided by WP3.

4.3.2.4.2. Other WP4 subsystems

It needs the subsystems of the monitoring task. In particular, it will just provide an additional correlation engine for aggregate fabric information. It will use the event subscription options of the monitoring task. [Resolved in 6.3.1-1]

It will also use the high-level data provided by the configuration database, but the GriFIS is not prepared to abstract information based on individual software packages. For example: it will not be able to induce from the fact the gcc, CMT, CERNlib, Gaudi, Geant, ROOT and SicbMC are there, that there is a functional LHCb Monte Carlo generation service available. This information has to be provided in the Configuration database, using the information provided by the respective VO's. [Resolved by Configuration task, awaiting document on HLD `views’ support (node view, monitoring view,etc.)]

4.3.2.5. FabNAT

4.3.2.5.1. Other Grid systems and WPs

The jobs supplied to the fabric by WP1 should contain explicitly in their description that an outgoing communications channel is needed and what its final destination will be. [reuiqrement on WP1, details forthcoming]

4.3.2.5.2. Other WP4 subsystems

It should be told by the Resource Manager that there is a need for a communications channel by a particular job. The availability of communications channels will be announced to the Resource Manager on request. Since communications channels (especially in a IPv4 context) are to be considered as a scarce resource, the availability of communications channels has to be managed in the same way as CPU, disk or software requirements. FabNAT expects that the WP4 Resource Management task will incorporate this requirement.

PS: If all parties involved in a communications channel use the same protocol stack in a transparent environment (e.g., all use IPv6), then no management of the channels is required, as the resources can be considered infinite. In such a case only regular bandwidth management will be needed. FabNAT will have no non-trivial implementation in such an environment.

The subsystem will provide an authorization module to check the validity of the communications destination requested. This is a static check only; other checks should be performed by the module provided by the RMS.

[Under discussion]

4.3.3. Open Questions

NB1.

The acronyms list below may be merged later on with similar lists from the other paragraphs into one list for the whole document.

NB2.

The use cases may be taken out of the architecture document and put into a separate document or into an appendix to this one.

Q1.

Is it grid(d)ification with single or double d? We invented this word, so we may choose.

Q2.

Shouldn’t we think of another acronym for GjMS as almost nobody can pronounce it, LJMS for example?

Q3.

Should the acronyms not be all upper case, like GRIFIS and FABNAT?

Q4.

Should we follow the style of putting WP4 before the name of every acronym?

Q5.

The grid gateway name is used everywhere. Is it always the same thing or should we re-name it?

4.4. Use Cases

4.4.1. Case: Submit a job to a fabric

This job will go through the following steps:

1. ComputeElement will have received a job, consisting of a JDL description and a user grid-authorization token (G-UAT) from the user’s favourite CAS. We assume that the executable and the associated data files are already in place. For the local credential and UID see below.

2. The ComputeElement will contact the GjMS and present the JDL and the G-UAT.

3. The GjMS assigns the unique job ID and stores it in the Job Repository. The attributes are the intact JDL and the G-UAT.

4. The GjMS calls LCAS:

1. LCAS checks the basic policy (e.g., order=deny/allow).

2. LCAS calls the registered authorization modules in sequence, with the JDL and G-UAT as input. The modules will say "yes" or "no". Modules are only called until a definite authorization decision has been reached. The modules called are: i) the local user ban list ii) check wall clock time iii) the quota check [module supplied by the RM task] iv) FabNAT destination network check

3. The final decision is "rejected", the GjMS returns the job to the compute element, stating that local authorization failed.

5. If the decision is "allowed", the GjMS passes the JDL and G-UAT to the LCMAPS system. This system checks, based on the users individual DN contained in the G-UAT, whether a local credential already exists. If so, this credential is assign to the G-UAT and stored in the repository. The repository's key is the user DN; attributes are the UID, GID, Kerberos token, etc.

If the UID did not exist, a new one is allocated and stored in the repository.

6. The JDL and the pointer to the local credential mapping repository entry is passed to the local resource manager.

7. When the RM finished with the job, it calls the GjMS again.

8. The GjMS will inform LCMAPS that the job has finished. Depending on local policy, the user account is retained, temporarily disabled for retained, or permanently erased. The erasure can only happen after the last subsystem holding a lock on the credentials has finished (i.e. a UID still held by the Data Manager).

The Data Manager may have a need to call the LCAS and LCMAPS services. In those cases, these subsystems shall have a access count associated with every entry.

9. The GIS is informed that the job has finished.

4.4.2. Use case: confirming a hosts identity on first install

[image: image4.wmf]New host to be installed

CFG Configuration Database

Secured http server

LCA root cert

Operator install disk:

-

kernel and init

-

CFG https agent

-

Signed cert of operator

-

Protected private key of operator

-

LCA root certificate

CFG data

ACLs

LCA cert and

privkey

FLIDS engine

Automated CA,

Will sign when request

Approved by `operator’

1:Operator boots system

2:agent makes https request

using operator credentials

3:https server checks CFG data ACL

(operator has all rights), can verify ID

of operator using LCA root cert

4:

sens config

data encrypted

using session key

5: host generates key pair

(but without a

passphrase

to

protecting private part)

6: request sent to FLIDS engine,

signed by operator key (in

cleartext

)

(FLIDS hostname known from CFG data)

7: FLIDS checks signature of operator, and signs

request with LCA key. Request DN namespace limited.

8: signed host cert back to host (in clear)

9: host checks signature on cert

using the LCA root cert on the boot disk

10: https requests to CFG

authenticated with new

signed host certificate

11: CFG web server can check

hostname in cert against

requesting IP address

and check

ACLs

When a host is first installed in a fabric, it will need to obtain its configuration data from the central configuration web service, provided by the CFG task. Since the configuration data is privacy enhanced, is cannot be accessed in an anonymous or unencrypted form: the web server will require positive identification that the requesting host is indeed privileged to read the configuration database for that host. Also, the host in question will need to positively identify the configuration web server as a trusted source to obtain configuration information (especially in an environment where the network is open to intrusions).

Two cases can be distinguished: a secure compute center where all hosts as well as the network are under trusted physical control (locked server rooms etc.) and a loosely coupled network that is (also) accessible to users. The latter case, being more complex, is treated first, the former can subsequently be derived form it.

1. A trusted operator obtains a public/private key pair (X.509 certificate pair) that is signed by the FLIDS. The CFG web server recognizes the authority of the FLIDS and grants full access to all host configuration data to this `installer’ certificate.

2. At initial install time, the operator starts the machine with a boot image (floppy disk?) that contains both the installer’s private key (in an encrypted form) and the public cert of the FLIDS. With his pass phrase, the operator can unlock the private key of the installer and establish a secure communications channel with the CFG web server. The web server can confirm the installer’s identity (using his cert) and the host can download his configuration using the installer’s authorization.

3. The host subsequently generates a new public/private key pair that is stored locally on that host only. The associated certificate request is signed with the identity of the installer and sent to the FLIDS.

4. The FLIDS recognizes the authorization of the installer to sign cert requests from hosts, signs the request with the FLIDS key and returns the cert to the requesting host. All this communication can be in the clear (since only integrity protection is needed and no private data is passed).

5. Since the boot image contains the FLIDS public cert, the validity of the response and the signature on the cert can be verified (so that the FLIDS cannot be spoofed itself).

6. The host now has his own certificate (usually containing to host name) that will be recognized by the CFG web server as being sufficient authentication to access the host’s configuration data. Authorization on that level can be done with unique host data that is contained in the signed cert and can be independently verified by the CFG web server (e.g. the DNS hostname provided that the local DNS can be trusted).

If the local network is sufficiently secure, the host using tftp can download the installer’s boot image automatically. In this case, the `robot-installer’s’ private key should be stored unencrypted in this network boot image. The install process can now be completely automatic, while processes on other hosts in the same network still cannot intercept the communication with the CFG web server.

This use case is based on the use of asymmetric public/private key methods. Porting of this method to other cryptographic paradigms has not been considered.

4.5. ACRONYMS AND EXPLANATIONS

· CAS:

· CFG:

· DN:

· FLIDS: fabric local identity service

· GIS: grid information service

· GjMS: grid job mediating service

· GRIFIS: grid fabric information service

· FabNAT: grid gateway interface

· GT: griddification task

· G-UAT: grid user authorization token

· ID: identifier

· IPv4: IP protocol version 4

· Ipv6: IP protocol version 6

· JDL: job definition language

· LCAS: local credential and authorization service

· LCMAPS: local credential mapping service

· MPI:

· UID: user identifier

· RMS: resource management system

· VO: virtual organisation

5. Task: Installation

5.1. Introduction

WP4 Installation system (WP4INST) provides means to install operating system and applications through the network, to configure system parameters and thereby to apply site policies. It makes available all the necessary applications and user environments on the node. It runs automatically or on request to examine the system and eventually to bring it to the externally defined state stored in the 'configuration database'.

It interacts with the following DataGrid WP4 tasks:

· WP4 Configuration Task (WP4CFG)

· WP4 Monitoring Task (WP4MON)

· WP4 Resource Management Task (FMS)

5.2. SCOPE AND FUNCTIONALITY

5.2.1. Scope

[TBD]

5.2.2. Functionality

The installation system is composed of following elements:

· Node Management System (NMS)

· Software Repository System (SRS)

· Software Packages (SP)

· Bootstrap Service System (BSS)

5.2.2.1. Software Packages (SP)

SPs are made out of three components:

· data:

Data component contains all files and directories which need to be installed on the node.

· dependency information:

Dependency information stores the SP's requirements on other SP existence on the node and/or particular system states which must be fulfilled before (de)installation/upgrade on the node is possible.

· method classes (install, configure, control):

Method classes provide mean by which SP can be manipulated by Node Management System (NMS). We think the following three method classes are needed:

· installation class methods: handle installation, removal, upgrades and verification of SP data component.

· configuration class methods: modify configuration of SP, verify it.

These methods are expected to access the Configuration database (WP4CFG) and translate the information found there into the SP's native format.

· control class methods: control execution of SP: start/stop, restart, verification of current state (this class is intended for use by daemons or administrative jobs like purging/rotating logs)

Implementation of all the components and methods is not mandatory. Default methods will be provided by a class hierarchy that allows to group SPs according to their functionality.

Each SP is in one of the following states in relation to a particular node:

· uninstalled

· installed

· configured

· running

(Only certain state transitions make sense, and there may be other states missing in this list. For typical user application packages, these states will collapse into either "uninstalled" or "installed").

5.2.2.2. Software Repository System (SRS)

The SRS stores SPs. It provides two interfaces:

· read-only interface for NMS to retrieve software packages. Because of the number of nodes this access method must be highly scalable (this interface is internal to the WP4 Installation task).

· read-write administrative interface to insert, remove and update software packages and to run queries. This will be used by software maintainers and may be used by the WP4 Configuration Task.

The SRS may need to interact with the WP4 Configuration Task in order to ensure consistency between stored configurations and available software packages.

Examples:

· when a new or updated SP is available inside the SRS the SRS notifies WP4CFG.

· In case of removal of SP from repository SRS shall consult WP4CFG first to check whether given package is used somewhere.

Scope: Package creation, testing and release (policies) are not going to be addressed by SRS

5.2.2.3. Node Management System (NMS)

NMS handles all software package related operations on a client node. It provides two major modes of operation:

· Execution mode:

NMS consults the desired node configuration (against information stored into WP4CFG 'database') and compares it to the current system state. To bring the node to the desired state, a sequence of actions has to be computed. Each action will be a call to a SP's method. NMS has to take the SP dependency information (both from already-installed SPs and from SPs in SRS) into account.

NMS then executes the actions in the computed order.

· Verification mode:

NMS compares existing state of node to desired one stored into 'configuration database' and reports the result.

Different levels of verification will be available. Verification mode can be used as a sensor for WP4 Monitoring Task.

NMS performs actions on per node basis, possibly also on per package basis. NMS action are triggered by Fabric Management System (FMS) or can be performed as unattended maintenance runs (e.g. cron jobs).

Scope: NMS does not make any assumption about what 'correct' state of the system is, it will blindly follow the Configuration DB information.

5.2.2.4. Bootstrap Service System (BSS)

BSS provides services needed for initial system installation through the network on request coming from FMS: It distributes network-related setup data to the node (e.g. through DHCP) and allows it to perform initial boot (e.g. with NFS-mounted root), which should trigger the initial run of NMS.

BSS consults WP4CFG to retrieve needed per node parameters (desired IP-address, .. etc).

5.2.3. Overview

[image: image5.png]Software
maintainers

SRS BSS

NS

We4lnsallation Task .+ extenaliother We4

The diagram shows the major WP4INST components and their interaction with external entities. These interactions can consist of both control and data flows.

5.2.4. Constraints

· The Installation Tools suite should NOT focus on any particular operating system or purpose of the node being installed/configured.

· The system MUST be scalable up to tens of thousands of nodes.

· The upper layers of the full installation process will be designed and implemented to be as portable as possible. Lower layers (i.e. Software Package data part format and/or installation methods may have to be system dependent).

5.3. EXTERNAL INTERFACES AND REQUIREMENTS

5.3.1. External Interfaces

External interfaces as exposed by WP4 Installation:

· NMS:

· Execution interface (e.g. to be used by FMS)

· Verification interface (e.g. to be used by WP4MON)

· SRS:

· Scalable Read-Only retrieval of Software Package.

· Repository Management interface for handling state of package(s) within SRS and for adding/deleting SPs.

· BSS:

· (possible) from FMS, used to tell BSS to bootstrap a given system

5.3.2. External Requirements and Open Questions

5.3.2.1. External Requirements

WP4INST needs support from the following entities in order to fulfil its task:

· Fabric Management System (FMS):

By Fabric Management System we understand human/automated operation entity which makes decisions about node allocation/setup/purpose. This could be the Resource Management System (RMS) of the WP4 Resource Task.

Such an entity must exist in order to drive Installation task actions (Installation System does not perform any action on its own: it executes high-level actions given by somebody else).

In particular the FMS will know when to do some upgrade and removes the node from production before telling NMS to perform actions. It will use monitoring to detect that the node is available again.

· Configuration task (WP4CFG):

This entity should provide a means to retrieve per-node configuration information and to store and retrieve SP-specific information. WP4CFG should allow for 2-way authentication (as to support "private" data) and should support secure (encrypted, checksummed, signed) transmission.

· Availability of requested Software Packages:

In order to execute any installation/upgrade all required SPs must be present within the SRS, introduced there through SRS interfaces.

· Monitoring task (WP4MON)

API for sending monitoring information from NMS acting as a (set of) sensor(s) of the Monitoring Task.

· Manual intervention: physically add/replace node (connect, power-up, enter into WP4CFG)

· Infrastructure: WP4INST relies on the basic technical infrastructure (electric power, cooling, operational network connectivity) being in place before installing a computer

5.3.2.2. Open Questions

5.3.2.2.1. SP vs WP4CFG

There are dependencies between SPs and WP4CFG:

· only the SP "knows" the configuration information it will ask WP4CFG for at runtime. WP4CFG cannot check beforehand that all required values are available, unless this knowledge is transferred into WP4CFG

· one way to get around the "missing values at runtime" problem is to have default values inside the SP for all keys it is going to ask for. However, these default values should rather be configurable through WP4CFG …

This would also allow the hierarchical features of WP4CFG to supply per-level default values. Maybe this is overly complex - it would create two separate hierarchies (class tree for the methods of SPs, hierarchical WP4CFG)

5.3.2.2.2. internal fabric structure

WP4INST will have to deal with physical entities (hardware, power+network connections, …) directly at the early installation stage. For technical reasons (DHCP/BOOTP should be limited to small broadcast domains for scalability, repository mirrors should be "close" to the node) the internal network structure is important for WP4INST (and probably others). While this is the responsibility of the fabric operator, some "best practice" network structure should be discussed.

5.4. USE CASES

5.4.1. Upgrade of Sendmail

Upgrade of sendmail (example for server/daemon software package) through node configuration change:

· FMS requests NMS to update node configuration,

· NMS checks desired configuration through WP4CFG, then:

· NMS discovers that sendmail SP has to be updated and computes necessary actions to be taken to bring node from current state to desired one.

NMS then fetches required SP from Software Repository via the SRS. NMS invokes control methods of currently installed SP, e.g.:

1. OldSendmail.control.stop(): stops the currently running daemon.

2. OldSendmail.install.remove(): removes existing files, directories and configuration

3. NewSendmail.install.install(): installs new files, directories and dummy configuration

4. NewSendmail.configure.configure(): retrieve configuration from WP4CFG and modifies configuration accordingly

5. NewSendmail.control.start(): starts new daemon

WP4MON may run NMS verify methods to detect that sendmail is indeed running.

5.4.2. Installation of sshd

(example for server/daemon software package requiring "private" information)

Similar to above Section 5.4.1, but in addition NMS should retrieve the private host key from configuration database while installing. This should happen in a secure way, i.e. after authentication and possibly save from eavesdropping. No previous SP needs to be de-installed.

5.4.3. Upgrade emacs

(example of user application)

Similar to Section 5.4.1, except that no stopping/starting/running actions are needed.

5.4.4. Spontaneous modification of installed software/configuration

(e.g. somebody destroys inetd.conf file)

This discrepancy is discovered during FMS/WP4MON-triggered or scheduled NMS run:

NMS checks current configuration against configuration database, discovers problem, computes how to solve it and performs necessary actions:

1. Inetd.configure.configure(): retrieve configuration from WP4CFG and modifies configuration accordingly

2. Inetd.control.restart(): restarts (kill -HUP) daemon

5.4.5. Installation of a new fabric node

NMS running on BSS (yes, after all BSS is a node , too!) is triggered to check BSS configuration against WP4CFG. It discovers that there are new nodes to be configured (and their IP, MAC - etc allocations). NMS reconfigures/updates BSS SP (BOOTP conf, DHCP conf etc).

From that point on BSS is ready to configure/install new node.

As a part of boot process NMS is started on newly configured node: it performs all the actions necessary to make the configuration/state of the new node match the desired configuration and reboots the system to use its new installation. Before node is rebooted it is reconfigured to use local system installation not BSS initial one. Probably as a last step of the process Monitoring software is started on the node, which then reports to FMS that the node has been successfully installed.

6. Task: Monitoring

6.1. Introduction

Monitoring of performance, functional and environmental changes for all resources contained in a fabric is needed in order to allow for optimised utilization of those resources. The monitoring is used by other fabric components to detect operational problems and trigger automatic (or manual) remedy actions. The monitoring is also used by the fabric managers and operators to get a health and status view of services and resources as well as accounting and history data.

6.2. Scope and Functionality

6.2.1. Scope

· The monitoring system provides the machinery to gather, transport and store monitoring measurements in a reliable way.

· The gathering will be extendible with third-party sensors.

· A basic set of system sensors (CPU load, etc.) will be provided.

· The monitoring system will provide an interface for applications to insert monitoring measurements.

· The monitoring provides the necessary framework to plug-in correlation-engines that takes a set of monitoring measurements as input and outputs a correlated measurement, which is gathered and stored in a reliable way.

· A correlation-engine will be provided for system functions.

· The monitoring system can trigger events (alarms) when a measurement is outside its configured limits.

· The monitoring system is scalable to efficiently handle up to thousands of individual monitoring measurements from tens of thousands of resources.

· The monitoring system will rely on configuration information from an external source.

· The monitoring system will not include recovery actions or the infrastructure to launch them.

· The infrastructure to extract monitoring data will be provided.

· A GUI for system managers will be provided.

· The monitoring repository will have a mechanism for enforcing authentication and authorization for extraction and insertion of data.

6.2.2. Functionality

6.2.2.1. General objectives

· The monitoring system architecture should be distributed and not imply any single instance of anything

· The architecture should be hierarchical to allow repeat instances at the node, cluster and site level. However, this will not prevent centralization of information if necessary.

· Guaranteed delivery of monitoring data implying caching.

6.2.2.2. Internal interfaces

· Agent to repository

6.2.2.3. Deliverables

· Plug-able agent

· Sensors for system monitoring

· Measurement repository

· Correlation engine for system management

· GUI for system managers

· Definition of the monitoring configuration information

6.3. External interfaces and Requirements

6.3.1. External Interfaces

· Interface to measurement repository with event subscription possibilities

· Interface to agent for applications (application monitoring)

· Sensor to agent interface

6.3.2. External Requirements and Open Questions

1. The monitoring system will rely on configuration information from an external source. This is matched by the scope description for the configuration management task.

2. To avoid polling it would be preferable if the configuration management system includes the possibility to subscribe to notification of changes in the configuration information.

3. The monitoring system will not include recovery actions or the infrastructure to launch them.

4. Request for clarification to the configuration management task: does the fetch KEY of configuration management system Low-Level Description API include the node name? I.e. can one use the LLD API to fetch the configuration on behalf of another node? The monitoring UI will need to for instance issue queries like: “what nodes are part of cluster X”, “which metrics are configured for node A”.

	Requirement
	Match

	1
	Configuration management task, section 2.2.1

	2
	Configuration management task, section 2.2.1: “monitoring task agents need to be informed of configuration changes”

	3
	Fault tolerance task, section 7.2.1: “Actuators performing repair installation, system reconfiguration, power, reset and the like”. Also, section 7.2.2.1: “The actuators are independent daemons running on each node …”.

	4
	Pending request for clarification from the configuration management task.

6.4. use caseS

6.4.1. Measuring the CPU load for a week and present the data on the screen.

· An external sensor measures periodically the CPU load on a system

· The sensor loads the measurement through the interface to the agent.

· The agent caches the monitoring data.

· The data is transferred from the agent to the measurement repository.

· An operator uses the monitoring GUI to retrieve the CPU load measurement from the repository.

7. TASK: FAULT TOLERANCE

7.1. Introduction

Provide functionality to improve reliability and reduce operating maintenance cost by providing means to perform as many repair and maintenance functions as possible automatically. Overall this task includes diagnostic software verifying integrity but also assisting in isolating potential problems. Further it includes methods to repair standard problems without human intervention. Certain automatic functions are to be provided, such as powering down nodes prior to overheating and the like. However most of the functionality is required to be coordinated with other tasks as those have to synchronize with the fault tolerance task. For example the detection of a corrupted configuration file cannot automatically launch a software reinstallation prior to approval by the scheduler in order ensure compatibility with potentially applications. Reconfigurations/software installations and upgrades cannot be performed prior to the fault tolerance system being informed in order to avoid appropriate alarms.

7.2. Scope and functionality

7.2.1. Scope

· Health service system providing functionality to improve system reliability and availability

· Sensors having plug-ins for commercial and third party devices

· Sensors also acquire network performance data for monitoring (sensors)

· Autonomous configuration verification and basic health monitoring functions in Sensors

· Interface to monitoring for reporting

· Interface to RSM for approval of actions

· Diagnostic access through sensor system (console port, etc)

· Actuators performing repair installation, System reconfiguration, power, reset and the like

· HMO functionality translating sensor information to actions to actuators

· Scalable from 10…10k nodes

· Statistical analysis tools, GUIs

· Need authentication?? Can this be done by HMO server??

· Interface to RSM for decision approval or scheduling

· Not limited to node but also to network (e.g. SNMP, support of network monitoring and reconfiguration of network switches and topology) and any other relevant component in the system (UPS??)

7.2.2. Functionality

The health services consist of three main building blocks

· Sensors, detecting the status of any relevant part of the system and reporting it to the monitoring system as well as to the HMO. Sensors will also perform certain automatic verification tasks, such as checking installation of software, monitoring power and temperature etc.

· Health and Maintenance server (Organization), receiving sensor data and making rule based decisions about possible repairs. Such decisions may have to be synchronized with the scheduler in order to ensure compatibility with the operating environment

· Actuators possibly executing decisions taken by the HMO. Such actions can range from modifying any software installation, killing runaway jobs up to rebooting an other operating system

7.2.2.1. Overview

The figure below shows a crude scratch of the overall architecture:

The sensors monitor system status in accordance with the scheduler (avoiding any actions that could interfere with running jobs). Any verification with the set configuration will be done autonomically by the sensors. Any violation reported to monitoring and HMO. In order to perform that task Sensors have to have a local copy of the relevant configuration information. To diagnose severe failure sensors shall be provided also to access the console devices of the individual node.

The actuators are independent daemons running on each node and are capable of executing whatever clean-up and repair functionality is required. The actuator functionality should also include access to the console port enabling to control boot activity should this become necessary.

The HMO derives actions should a system run out of compliance with the configuration. Whether or not an action can be issued autonomously depends on the action and the status of the particular system. In the most generic case HMO actions will be scheduled through RSM. This can be done in two ways. One is an action job simply submitted through RSM (reinstall software package X, after running job completes). The other may require RSM to update its internal database (remove a node from system and then perform any reboot or intrusive repair actions directly and finally announce the system back on-line).

There is a direct interface expected between the HMO and the servers and actuators. Although the sensor data could be acquired through the monitoring system, in order to have the fault tolerance functionality as independent as possible, an independent interface is required. The monitoring system will be posted upon any activity of the fault tolerance system and may be consulted for history information in order to diagnose complex failures. The actuators are controlled directly by the HMO.

7.2.2.2. General Objectives

· Health System must not have any single point of failure

· Failure of Health System must not stop cluster

· HS must be distributed (for scalability and tolerance)

· HS should optimize message rate and volume in system (hierarchical

· All HS activity has to be trackable through monitoring

· Upgradeable

· Standardized interfaces to other systems (actuators and sensors)

· HMO keeps current (distributed) system status, no history

7.2.2.3. Deliverables

· Sensors for Linux as deaemons

· Autonomy functionality as part of sensors

· Hierarchical, distributed HMO

· Various user interfaces, analysis tools

· Data mining functionality (maybe monitoring??)

7.3. External Interfaces and Requirements

7.3.1. External Interfaces

· Client to configuration database for configuration verification and determination of repair procedure (e.g. each software package shall include a reinstall and repair all script)

· Push Client to Monitoring in order to log any alarms and state changes

· Pull Client to Monitoring in order to acquire history information for diagnostics (failure rates etc in order to launch long term repair. For example each read error from HDD can trigger verification of when the last errors happened. As the error rate increases the disk might be marked read only, backed up and scheduled for replacement

· Client interface to resource management and scheduler (assumed to be one major system with sub components). Repair jobs will be submitted through RSM. Those jobs will specify the resources affected in order to allow RSM to determine whether or not such repair interferes with potentially running applications.

7.3.2. External Requirements and Open Questions

[TBD]
7.4. Use Cases

[TBD]
8. Glossary

8.1. Configuration Management

8.1.1. Definitions
A configuration information is any piece of information that is needed in order to statically configure a machine. It does not include dynamic information that changes while the machine is normally running (e.g. the contents of a database hosted on the machine) and information generated by the machine itself such as system load or the fact that the machine is being reconfigured.

The configuration database (CDB) is the system holding configuration information for a given set of machines (e.g. for a computer center or for a whole site). It provides different views on the stored information, optimised for the different access patterns of the programs requesting configuration information.

The high-level description (HLD) is the view optimised for high-level operations such as configuration management of a large number of machines: it's read-write and supports abstraction.

The node view or low-level description (LLD) is the view optimised for normal machine configuration operations: it's read-only but scalable and contains only the configuration information relevant to the machine requesting it.

The machine level description (MLD) is the configuration information as seen by the operating system and applications. It's usually made of files with different formats such as /etc/sendmail.cf to configure sendmail.

The configuration information can be represented in a tree structure (like a UNIX filesystem or the Windows registry) made of nodes that can be either leaves called properties (similar to files) or interior nodes called resources (similar to directories). For instance:

/hardware/disks/1/size = 4200

/hardware/disks/1/dev = /dev/hda

could represent a part of the configuration information with the resource /hardware/disks/1 representing the first disk and the property /hardware/disks/1/size representing its size...

8.1.2. Acronyms

· API: Application Programming Interface

· CDB: Configuration DataBase

· CLI: Command Line Interface

· GUI: Graphical User Interface

· HLD: High-Level Description

· LLD: Low-Level Description

· MLD: Machine Level Description

8.2. Resource Management

8.3. Gridification

8.3.1. Acronyms

· CAS:

· CFG:

· DN:

· FLIDS: fabric local identity service

· GIS: grid information service

· GjMS: grid job mediating service

· GRIFIS: grid fabric information service

· FabNAT: grid gateway interface

· GT: griddification task

· G-UAT: grid user authorization token

· ID: identifier

· IPv4: IP protocol version 4

· Ipv6: IP protocol version 6

· JDL: job definition language

· LCAS: local credential and authorization service

· LCMAPS: local credential mapping service

· MPI:

· UID: user identifier

· RMS: resource management system

· VO: virtual organisation

8.4. Installation

8.5. Monitoring

8.6. Fault Tolerance

9. Bibliography

[KR01] A. Keller and A. Reinefeld. Anatomy of a Resource Management System for HPC Clusters. Annual Review of Scalable Computing Vol. 3, 2001.

http://www.zib.de/PaperWeb/abstracts/ZR-00-38/
[WP1] C.Anglano et al. Workload Management on a Data Grid: a review of current technology.

GIS

(WP3)

Schematic view of the gridification building blocks

in relation to the RMS, the CE and the GIS

Farm1

Farm2

GjMS

Policy

database

Repository

 LCAS

LCMAPS

RMS

local

GriFIS

global

Repository

FabNAT

CE

(WP1)

GIS

(WP3)

1

CE

Global

Local

Repository

2

9

Resource

Manager

3

6

GjMS

7

Policy dbase

8

Repository

5

Yes/no

4

LCMAPS

LCAS

� Job Description Language.

� In the sense of RFC 2119

5
	IST-2000-25182
	INTERNAL
	21 / 48

_1053254913.ppt

CFG data ACLs

1:Operator boots system

2:agent makes https request

using operator credentials

3:https server checks CFG data ACL

(operator has all rights), can verify ID

of operator using LCA root cert

4: sens config data encrypted

using session key

5: host generates key pair

(but without a passphrase to

protecting private part)

6: request sent to FLIDS engine,

signed by operator key (in cleartext)

(FLIDS hostname known from CFG data)

7: FLIDS checks signature of operator, and signs

request with LCA key. Request DN namespace limited.

8: signed host cert back to host (in clear)

9: host checks signature on cert

using the LCA root cert on the boot disk

10: https requests to CFG

authenticated with new

signed host certificate

11: CFG web server can check

hostname in cert against

requesting IP address

and check ACLs

New host to be installed

CFG Configuration Database

Secured http server

LCA root cert

Operator install disk:

		kernel and init

		CFG https agent

		Signed cert of operator

		Protected private key of operator

		LCA root certificate

LCA cert and privkey

FLIDS engine

Automated CA,

Will sign when request

Approved by `operator’

UNKNOWN-0.unknown

UNKNOWN-1.unknown

UNKNOWN-2.unknown

UNKNOWN-3.unknown

